Search

Full bibliography 63 resources

  • Evaluation measures act as objective functions to be optimized by information retrieval systems. Such objective functions must accurately reflect user requirements, particularly when tuning IR systems and learning ranking functions. Ambiguity in queries and redundancy in retrieved documents are poorly reflected by current evaluation measures. In this paper, we present a framework for evaluation that systematically rewards novelty and diversity. We develop this framework into a specific evaluation measure, based on cumulative gain. We demonstrate the feasibility of our approach using a test collection based on the TREC question answering track.

  • In this paper, we define and present a comprehensive classification of user intent for Web searching. The classification consists of three hierarchical levels of informational, navigational, and transactional intent. After deriving attributes of each, we then developed a software application that automatically classified queries using a Web search engine log of over a million and a half queries submitted by several hundred thousand users. Our findings show that more than 80% of Web queries are informational in nature, with about 10% each being navigational and transactional. In order to validate the accuracy of our algorithm, we manually coded 400 queries and compared the results from this manual classification to the results determined by the automated method. This comparison showed that the automatic classification has an accuracy of 74%. Of the remaining 25% of the queries, the user intent is vague or multi-faceted, pointing to the need for probabilistic classification. We discuss how search engines can use knowledge of user intent to provide more targeted and relevant results in Web searching.

  • Understanding user intent is key to designing an effective ranking system in a search engine. In the absence of any explicit knowledge of user intent, search engines want to diversify results to improve user satisfaction. In such a setting, the probability ranking principle-based approach of presenting the most relevant results on top can be sub-optimal, and hence the search engine would like to trade-off relevance for diversity in the results. In analogy to prior work on ranking and clustering systems, we use the axiomatic approach to characterize and design diversification systems. We develop a set of natural axioms that a diversification system is expected to satisfy, and show that no diversification function can satisfy all the axioms simultaneously. We illustrate the use of the axiomatic framework by providing three example diversification objectives that satisfy different subsets of the axioms. We also uncover a rich link to the facility dispersion problem that results in algorithms for a number of diversification objectives. Finally, we propose an evaluation methodology to characterize the objectives and the underlying axioms. We conduct a large scale evaluation of our objectives based on two data sets: a data set derived from the Wikipedia disambiguation pages and a product database.

  • This paper provides overview and instruction regarding the evaluation of interactive information retrieval systems with users. The primary goal of this article is to catalog and compile material related to this topic into a single source. This article (1) provides historical background on the development of user-centered approaches to the evaluation of interactive information retrieval systems; (2) describes the major components of interactive information retrieval system evaluation; (3) describes different experimental designs and sampling strategies; (4) presents core instruments and data collection techniques and measures; (5) explains basic data analysis techniques; and (4) reviews and discusses previous studies. This article also discusses validity and reliability issues with respect to both measures and methods, presents background information on research ethics and discusses some ethical issues which are specific to studies of interactive information retrieval (IIR). Finally, this article concludes with a discussion of outstanding challenges and future research directions.

  • This study examined how searchers interacted with a web-based, faceted library catalog when conducting exploratory searches. It applied eye tracking, stimulated recall interviews, and direct observation to investigate important aspects of gaze behavior in a faceted search interface: what components of the interface searchers looked at, for how long, and in what order. It yielded empirical data that will be useful for both practitioners (e.g., for improving search interface designs), and researchers (e.g., to inform models of search behavior). Results of the study show that participants spent about 50 seconds per task looking at (fixating on) the results, about 25 seconds looking at the facets, and only about 6 seconds looking at the query itself. These findings suggest that facets played an important role in the exploratory search process.

  • The goal of the Redundancy, Diversity, and Interdependent Document Relevance workshop was to explore how ranking, performance assessment and learning to rank can move beyond the assumption that the relevance of a document is independent of other documents. In particular, the workshop focussed on three themes: the effect of redundancy on information retrieval utility (for example, minimizing the wasted effort of users who must skip redundant information), the role of diversity (for example, for mitigating the risk of misinterpreting ambiguous queries), and algorithms for set-level optimization (where the quality of a set of retrieved documents is not simply the sum of its parts). This workshop built directly upon the Beyond Binary Relevance: Preferences, Diversity and Set-Level Judgments workshop at SIGIR 2008 [3], shifting focus to address the questions left open by the discussions and results from that workshop. As such, it was the first workshop to explicitly focus on the related research challenges of redundancy, diversity, and interdependent relevance – all of which require novel performance measures, learning methods, and evaluation techniques. The workshop program committee consisted of 15 researchers from academia and industry, with experience in IR evaluation, machine learning, and IR algorithmic design. Over 40 people attended the workshop. This report aims to summarize the workshop, and also to systematize common themes and key concepts so as to encourage research in the three workshop themes. It contains our attempt to summarize and organize the topics that came up in presentations as well as in discussions, pulling out common elements. Many audience members contributed, yet due to the free-flowing discussion, attributing all the observations to particular audience members is unfortunately impossible. Not all audience members would necessarily agree with the views presented, but we do attempt to present a consensus view as far as possible.

  • The Probabilistic Relevance Framework (PRF) is a formal framework for document retrieval, grounded in work done in the 1970–1980s, which led to the development of one of the most successful text-retrieval algorithms, BM25. In recent years, research in the PRF has yielded new retrieval models capable of taking into account document meta-data (especially structure and link-graph information). Again, this has led to one of the most successful Web-search and corporate-search algorithms, BM25F. This work presents the PRF from a conceptual point of view, describing the probabilistic modelling assumptions behind the framework and the different ranking algorithms that result from its application: the binary independence model, relevance feedback models, BM25 and BM25F. It also discusses the relation between the PRF and other statistical models for IR, and covers some related topics, such as the use of non-textual features, and parameter optimisation for models with free parameters.

  • Traditional editorial effectiveness measures, such as nDCG, remain standard for Web search evaluation. Unfortunately, these traditional measures can inappropriately reward redundant information and can fail to reflect the broad range of user needs that can underlie a Web query. To address these deficiencies, several researchers have recently proposed effectiveness measures for novelty and diversity. Many of these measures are based on simple cascade models of user behavior, which operate by considering the relationship between successive elements of a result list. The properties of these measures are still poorly understood, and it is not clear from prior research that they work as intended. In this paper we examine the properties and performance of cascade measures with the goal of validating them as tools for measuring effectiveness. We explore their commonalities and differences, placing them in a unified framework; we discuss their theoretical difficulties and limitations, and compare the measures experimentally, contrasting them against traditional measures and against other approaches to measuring novelty. Data collected by the TREC 2009 Web Track is used as the basis for our experimental comparison. Our results indicate that these measures reward systems that achieve an balance between novelty and overall precision in their result lists, as intended. Nonetheless, other measures provide insights not captured by the cascade measures, and we suggest that future evaluation efforts continue to report a variety of measures.

  • In this paper we describe a general framework for evaluation and optimization of methods for diversifying query results. In these methods, an initial ranking candidate set produced by a query is used to construct a result set, where elements are ranked with respect to relevance and diversity features, i.e., the retrieved elements should be as relevant as possible to the query, and, at the same time, the result set should be as diverse as possible. While addressing relevance is relatively simple and has been heavily studied, diversity is a harder problem to solve. One major contribution of this paper is that, using the above framework, we adapt, implement and evaluate several existing methods for diversifying query results. We also propose two new approaches, namely the Greedy with Marginal Contribution (GMC) and the Greedy Randomized with Neighborhood Expansion (GNE) methods. Another major contribution of this paper is that we present the first thorough experimental evaluation of the various diversification techniques implemented in a common framework. We examine the methods' performance with respect to precision, running time and quality of the result. Our experimental results show that while the proposed methods have higher running times, they achieve precision very close to the optimal, while also providing the best result quality. While GMC is deterministic, the randomized approach (GNE) can achieve better result quality if the user is willing to tradeoff running time.

  • As information becomes more ubiquitous and the demands that searchers have on search systems grow, there is a need to support search behaviors beyond simple lookup. Information seeking is the process or activity of attempting to obtain information in both human and technological contexts. Exploratory search describes an information-seeking problem context that is open-ended, persistent, and multifaceted, and information-seeking processes that are opportunistic, iterative, and multitactical. Exploratory searchers aim to solve complex problems and develop enhanced mental capacities. Exploratory search systems support this through symbiotic human-machine relationships that provide guidance in exploring unfamiliar information landscapes. Exploratory search has gained prominence in recent years. There is an increased interest from the information retrieval, information science, and human-computer interaction communities in moving beyond the traditional turn-taking interaction model supported by major Web search engines, and toward support for human intelligence amplification and information use. In this lecture, we introduce exploratory search, relate it to relevant extant research, outline the features of exploratory search systems, discuss the evaluation of these systems, and suggest some future directions for supporting exploratory search. Exploratory search is a new frontier in the search domain and is becoming increasingly important in shaping our future world.

  • In 1975 Tefko Saracevic declared “the subject knowledge view” to be the most fundamental perspective of relevance. This paper examines the assumptions in different views of relevance, including “the system's view” and “the user's view” and offers a reinterpretation of these views. The paper finds that what was regarded as the most fundamental view by Saracevic in 1975 has not since been considered (with very few exceptions). Other views, which are based on less fruitful assumptions, have dominated the discourse on relevance in information retrieval and information science. Many authors have reexamined the concept of relevance in information science, but have neglected the subject knowledge view, hence basic theoretical assumptions seem not to have been properly addressed. It is as urgent now as it was in 1975 seriously to consider “the subject knowledge view” of relevance (which may also be termed “the epistemological view”). The concept of relevance, like other basic concepts, is influenced by overall approaches to information science, such as the cognitive view and the domain-analytic view. There is today a trend toward a social paradigm for information science. This paper offers an understanding of relevance from such a social point of view.

  • Relevance is a fundamental, though not completely understood, concept for documentation, information science, and information retrieval. This article presents the history of relevance through an exhaustive review of the literature. Such history being very complex (about 160 papers are discussed), it is not simple to describe it in a comprehensible way. Thus, first of all a framework for establishing a common ground is defined, and then the history itself is illustrated via the presentation in chronological order of the papers on relevance. The history is divided into three periods (“Before 1958,” “1959–1976,” and “1977–present”) and, inside each period, the papers on relevance are analyzed under seven different aspects (methodological foundations, different kinds of relevance, beyond-topical criteria adopted by users, modes for expression of the relevance judgment, dynamic nature of relevance, types of document representation, and agreement among different judges). © 1997 John Wiley & Sons, Inc.

  • All is flux. —Plato on Knowledge in the Theaetetus (about 369 BC) Relevance is a, if not even the, key notion in information science in general and information retrieval in particular. This two-part critical review traces and synthesizes the scholarship on relevance over the past 30 years or so and provides an updated framework within which the still widely dissonant ideas and works about relevance might be interpreted and related. It is a continuation and update of a similar review that appeared in 1975 under the same title, considered here as being Part I. The present review is organized in two parts: Part II addresses the questions related to nature and manifestations of relevance, and Part III addresses questions related to relevance behavior and effects. In Part II, the nature of relevance is discussed in terms of meaning ascribed to relevance, theories used or proposed, and models that have been developed. The manifestations of relevance are classified as to several kinds of relevance that form an interdependent system of relevancies. In Part III, relevance behavior and effects are synthesized using experimental and observational works that incorporated data. In both parts, each section concludes with a summary that in effect provides an interpretation and synthesis of contemporary thinking on the topic treated or suggests hypotheses for future research. Analyses of some of the major trends that shape relevance work are offered in conclusions.

  • The objectives of the study were to conduct a series of observations and experiments under as real-life a situation as possible related to: (1) user context of questions in information retrieval; (2) the structure and classification of questions; (3) cognitive traits and decision making of searchers; and (4) different searches of the same question. The study is presented in three parts: Part I presents the background of the study and describes the models, measures, methods, procedures and statistical analyses used. Part II is devoted to results related to users, questions and effectiveness measures, and Part III to results related to searchers, searches and overlap studies. A concluding summary of all results is presented in Part III. © 1988 John Wiley & Sons, Inc.

  • The objectives of the study were to conduct a series of observations and experiments under as real-life situation as possible related to: (1) user context of questions in information retrieval; (2) the structure and classification of questions; (3) cognitive traits and decision making of searchers; and (4) diferent searches of the same question. The study is presented in three parts: Part I presents the background of the study and describes the models, measures, methods, procedures and statistical analyses used. Part II is devoted to results related to users, questions and effectiveness measures, and Part III to results related to searchers, searches and overlap studies. A concluding summary of all results is presented in Part III. © 1988 John Wiley & Sons, Inc.

  • The experimental evidence accumulated over the past 20 years indicates that text indexing systems based on the assignment of appropriately weighted single terms produce retrieval results that are superior to those obtainable with other more elaborate text representations. These results depend crucially on the choice of effective termweighting systems. This article summarizes the insights gained in automatic term weighting, and provides baseline single-term-indexing models with which other more elaborate content analysis procedures can be compared.

  • Faceted browsing is a common feature of new library catalog interfaces. But to what extent does it improve user performance in searching within today’s library catalog systems? This article reviews the literature for user studies involving faceted browsing and user studies of “next-generation” library catalogs that incorporate faceted browsing. Both the results and the methods of these studies are analyzed by asking, What do we currently know about faceted browsing? How can we design better studies of faceted browsing in library catalogs? The article proposes methodological considerations for practicing librarians and provides examples of goals, tasks, and measurements for user studies of faceted browsing in library catalogs.

  • We live in an information age that requires us, more than ever, to represent, access, and use information. Over the last several decades, we have developed a modern science and technology for information retrieval, relentlessly pursuing the vision of a "memex" that Vannevar Bush proposed in his seminal article, "As We May Think." Faceted search plays a key role in this program. Faceted search addresses weaknesses of conventional search approaches and has emerged as a foundation for interactive information retrieval. User studies demonstrate that faceted search provides more effective information-seeking support to users than best-first search. Indeed, faceted search has become increasingly prevalent in online information access systems, particularly for e-commerce and site search. In this lecture, we explore the history, theory, and practice of faceted search. Although we cannot hope to be exhaustive, our aim is to provide sufficient depth and breadth to offer a useful resource to both researchers and practitioners. Because faceted search is an area of interest to computer scientists, information scientists, interface designers, and usability researchers, we do not assume that the reader is a specialist in any of these fields. Rather, we offer a self-contained treatment of the topic, with an extensive bibliography for those who would like to pursue particular aspects in more depth.

Last update from database: 6/30/25, 6:42 AM (UTC)