Search

Full bibliography 63 resources

  • Gross et al. (2015) have demonstrated that about a quarter of hits would typically be lost to keyword searchers if contemporary academic library catalogs dropped their controlled subject headings. This article re- ports on an investigation of the search value that subject descriptors and identifiers assigned by professional indexers add to a bibliographic database, namely the Australian Education Index (AEI). First, a similar methodology to that developed by Gross et al. (2015) was applied, with keyword searches representing a range of educational topics run on the AEI database with and without its subject indexing. The results indicated that AEI users would also lose, on average, about a quarter of hits per query. Second, an alternative research design was applied in which an experienced literature searcher was asked to find resources on a set of educational topics on an AEI database stripped of its subject indexing and then asked to search for additional resources on the same topics after the subject indexing had been reinserted. In this study, the proportion of additional resources that would have been lost had it not been for the subject indexing was again found to be about a quarter of the total resources found for each topic, on average.

  • The presented ontology-based model for indexing and retrieval combines the methods and experiences of traditional indexing languages with their cognitively interpreted entities and relationships with the strengths and possibilities of formal knowledge representation. The core component of the model uses inferences along the paths of typed relations between the entities of a knowledge representation for enabling the determination of result sets in the context of retrieval processes. A proposal for a general, but condensed, inventory of typed relations is given. The entities are arranged in aspect-oriented facets to ensure a consistent hierarchical structure. The possible consequences for indexing and retrieval are discussed.

  • With the increasing number and diversity of search tools available, interest in the evaluation of search systems, particularly from a user perspective, has grown among researchers. More researchers are designing and evaluating interactive information retrieval (IIR) systems and beginning to innovate in evaluation methods. Maturation of a research specialty relies on the ability to replicate research, provide standards for measurement and analysis, and understand past endeavors. This article presents a historical overview of 40 years of IIR evaluation studies using the method of systematic review. A total of 2,791 journal and conference units were manually examined and 127 articles were selected for analysis in this study, based on predefined inclusion and exclusion criteria. These articles were systematically coded using features such as author, publication date, sources and references, and properties of the research method used in the articles, such as number of subjects, tasks, corpora, and measures. Results include data describing the growth of IIR studies over time, the most frequently occurring and cited authors and sources, and the most common types of corpora and measures used. An additional product of this research is a bibliography of IIR evaluation research that can be used by students, teachers, and those new to the area. To the authors' knowledge, this is the first historical, systematic characterization of the IIR evaluation literature, including the documentation of methods and measures used by researchers in this specialty.

  • The facet-analytic paradigm is probably the most distinct approach to knowledge organization within Library and Information Science, and in many ways it has dominated what has be termed “modern classification theory”. It was mainly developed by S.R. Ranganathan and the British Classification Research Group, but it is mostly based on principles of logical division developed more than two millennia ago. Colon Classification (CC) and Bliss 2 (BC2) are among the most important systems developed on this theoretical basis, but it has also influenced the development of other systems, such as the Dewey Decimal Classification (DDC) and is also applied in many websites. It still has a strong position in the field and it is the most explicit and “pure” theoretical approach to knowledge organization (KO) (but it is not by implication necessarily also the most important one). The strength of this approach is its logical principles and the way it provides structures in knowledge organization systems (KOS). The main weaknesses are (1) its lack of empirical basis and (2) its speculative ordering of knowledge without basis in the development or influence of theories and socio-historical studies. It seems to be based on the problematic assumption that relations between concepts are a priori and not established by the development of models, theories and laws.

  • The Classification Research Group manifesto of 1955, 'Faceted classification as the basis of all information retrieval', has been at least in part achieved, and there is much evidence of faceted classification influencing a whole range of modern information retrieval tools. This paper examines the theory underlying faceted classification, how and why it has been taken up so widely, and what benefits it brings to the activity of knowledge organization. The role of facet analysis as a general research tool is also considered, and how it compares with other content analysis tools as a means of modelling subject domains.

  • This study examined how searchers interact with a web-based, faceted library catalog when conducting exploratory searches. It applied multiple methods, including eye tracking and stimulated recall interviews, to investigate important aspects of faceted search interface use, specifically: (a) searcher gaze behavior—what components of the interface searchers look at; (b) how gaze behavior differs when training is and is not provided; (c) how gaze behavior changes as searchers become familiar with the interface; and (d) how gaze behavior differs depending on the stage of the search process. The results confirm previous findings that facets account for approximately 10–30% of interface use. They show that providing a 60-second video demonstration increased searcher use of facets. However, searcher use of the facets did not evolve during the study session, which suggests that searchers may not, on their own, rapidly apply the faceted interfaces. The findings also suggest that searcher use of interface elements varied by the stage of their search during the session, with higher use of facets during decision-making stages. These findings will be of interest to librarians and interface designers who wish to maximize the value of faceted searching for patrons, as well as to researchers who study search behavior.

  • Traditional editorial effectiveness measures, such as nDCG, remain standard for Web search evaluation. Unfortunately, these traditional measures can inappropriately reward redundant information and can fail to reflect the broad range of user needs that can underlie a Web query. To address these deficiencies, several researchers have recently proposed effectiveness measures for novelty and diversity. Many of these measures are based on simple cascade models of user behavior, which operate by considering the relationship between successive elements of a result list. The properties of these measures are still poorly understood, and it is not clear from prior research that they work as intended. In this paper we examine the properties and performance of cascade measures with the goal of validating them as tools for measuring effectiveness. We explore their commonalities and differences, placing them in a unified framework; we discuss their theoretical difficulties and limitations, and compare the measures experimentally, contrasting them against traditional measures and against other approaches to measuring novelty. Data collected by the TREC 2009 Web Track is used as the basis for our experimental comparison. Our results indicate that these measures reward systems that achieve an balance between novelty and overall precision in their result lists, as intended. Nonetheless, other measures provide insights not captured by the cascade measures, and we suggest that future evaluation efforts continue to report a variety of measures.

  • In this paper we describe a general framework for evaluation and optimization of methods for diversifying query results. In these methods, an initial ranking candidate set produced by a query is used to construct a result set, where elements are ranked with respect to relevance and diversity features, i.e., the retrieved elements should be as relevant as possible to the query, and, at the same time, the result set should be as diverse as possible. While addressing relevance is relatively simple and has been heavily studied, diversity is a harder problem to solve. One major contribution of this paper is that, using the above framework, we adapt, implement and evaluate several existing methods for diversifying query results. We also propose two new approaches, namely the Greedy with Marginal Contribution (GMC) and the Greedy Randomized with Neighborhood Expansion (GNE) methods. Another major contribution of this paper is that we present the first thorough experimental evaluation of the various diversification techniques implemented in a common framework. We examine the methods' performance with respect to precision, running time and quality of the result. Our experimental results show that while the proposed methods have higher running times, they achieve precision very close to the optimal, while also providing the best result quality. While GMC is deterministic, the randomized approach (GNE) can achieve better result quality if the user is willing to tradeoff running time.

  • Faceted browsing is a common feature of new library catalog interfaces. But to what extent does it improve user performance in searching within today’s library catalog systems? This article reviews the literature for user studies involving faceted browsing and user studies of “next-generation” library catalogs that incorporate faceted browsing. Both the results and the methods of these studies are analyzed by asking, What do we currently know about faceted browsing? How can we design better studies of faceted browsing in library catalogs? The article proposes methodological considerations for practicing librarians and provides examples of goals, tasks, and measurements for user studies of faceted browsing in library catalogs.

  • In 1975 Tefko Saracevic declared “the subject knowledge view” to be the most fundamental perspective of relevance. This paper examines the assumptions in different views of relevance, including “the system's view” and “the user's view” and offers a reinterpretation of these views. The paper finds that what was regarded as the most fundamental view by Saracevic in 1975 has not since been considered (with very few exceptions). Other views, which are based on less fruitful assumptions, have dominated the discourse on relevance in information retrieval and information science. Many authors have reexamined the concept of relevance in information science, but have neglected the subject knowledge view, hence basic theoretical assumptions seem not to have been properly addressed. It is as urgent now as it was in 1975 seriously to consider “the subject knowledge view” of relevance (which may also be termed “the epistemological view”). The concept of relevance, like other basic concepts, is influenced by overall approaches to information science, such as the cognitive view and the domain-analytic view. There is today a trend toward a social paradigm for information science. This paper offers an understanding of relevance from such a social point of view.

  • Information retrieval is the foundation for modern search engines. This textbook offers an introduction to the core topics underlying modern search technologies, including algorithms, data structures, indexing, retrieval, and evaluation. The emphasis is on implementation and experimentation; each chapter includes exercises and suggestions for student projects. Wumpus -- a multiuser open-source information retrieval system developed by one of the authors and available online -- provides model implementations and a basis for student work. The modular structure of the book allows instructors to use it in a variety of graduate-level courses, including courses taught from a database systems perspective, traditional information retrieval courses with a focus on IR theory, and courses covering the basics of Web retrieval. In addition to its classroom use, Information Retrieval will be a valuable reference for professionals in computer science, computer engineering, and software engineering.

  • The Probabilistic Relevance Framework (PRF) is a formal framework for document retrieval, grounded in work done in the 1970–1980s, which led to the development of one of the most successful text-retrieval algorithms, BM25. In recent years, research in the PRF has yielded new retrieval models capable of taking into account document meta-data (especially structure and link-graph information). Again, this has led to one of the most successful Web-search and corporate-search algorithms, BM25F. This work presents the PRF from a conceptual point of view, describing the probabilistic modelling assumptions behind the framework and the different ranking algorithms that result from its application: the binary independence model, relevance feedback models, BM25 and BM25F. It also discusses the relation between the PRF and other statistical models for IR, and covers some related topics, such as the use of non-textual features, and parameter optimisation for models with free parameters.

  • The goal of the Redundancy, Diversity, and Interdependent Document Relevance workshop was to explore how ranking, performance assessment and learning to rank can move beyond the assumption that the relevance of a document is independent of other documents. In particular, the workshop focussed on three themes: the effect of redundancy on information retrieval utility (for example, minimizing the wasted effort of users who must skip redundant information), the role of diversity (for example, for mitigating the risk of misinterpreting ambiguous queries), and algorithms for set-level optimization (where the quality of a set of retrieved documents is not simply the sum of its parts). This workshop built directly upon the Beyond Binary Relevance: Preferences, Diversity and Set-Level Judgments workshop at SIGIR 2008 [3], shifting focus to address the questions left open by the discussions and results from that workshop. As such, it was the first workshop to explicitly focus on the related research challenges of redundancy, diversity, and interdependent relevance – all of which require novel performance measures, learning methods, and evaluation techniques. The workshop program committee consisted of 15 researchers from academia and industry, with experience in IR evaluation, machine learning, and IR algorithmic design. Over 40 people attended the workshop. This report aims to summarize the workshop, and also to systematize common themes and key concepts so as to encourage research in the three workshop themes. It contains our attempt to summarize and organize the topics that came up in presentations as well as in discussions, pulling out common elements. Many audience members contributed, yet due to the free-flowing discussion, attributing all the observations to particular audience members is unfortunately impossible. Not all audience members would necessarily agree with the views presented, but we do attempt to present a consensus view as far as possible.

  • Learning to rank for Information Retrieval (IR) is a task to automatically construct a ranking model using training data, such that the model can sort new objects according to their degrees of relevance, preference, or importance. Many IR problems are by nature ranking problems, and many IR technologies can be potentially enhanced by using learning-to-rank techniques. The objective of this tutorial is to give an introduction to this research direction. Specifically, the existing learning-to-rank algorithms are reviewed and categorized into three approaches: the pointwise, pairwise, and listwise approaches. The advantages and disadvantages with each approach are analyzed, and the relationships between the loss functions used in these approaches and IR evaluation measures are discussed. Then the empirical evaluations on typical learning-to-rank methods are shown, with the LETOR collection as a benchmark dataset, which seems to suggest that the listwise approach be the most effective one among all the approaches. After that, a statistical ranking theory is introduced, which can describe different learning-to-rank algorithms, and be used to analyze their query-level generalization abilities. At the end of the tutorial, we provide a summary and discuss potential future work on learning to rank.

  • This paper provides overview and instruction regarding the evaluation of interactive information retrieval systems with users. The primary goal of this article is to catalog and compile material related to this topic into a single source. This article (1) provides historical background on the development of user-centered approaches to the evaluation of interactive information retrieval systems; (2) describes the major components of interactive information retrieval system evaluation; (3) describes different experimental designs and sampling strategies; (4) presents core instruments and data collection techniques and measures; (5) explains basic data analysis techniques; and (4) reviews and discusses previous studies. This article also discusses validity and reliability issues with respect to both measures and methods, presents background information on research ethics and discusses some ethical issues which are specific to studies of interactive information retrieval (IIR). Finally, this article concludes with a discussion of outstanding challenges and future research directions.

  • We live in an information age that requires us, more than ever, to represent, access, and use information. Over the last several decades, we have developed a modern science and technology for information retrieval, relentlessly pursuing the vision of a "memex" that Vannevar Bush proposed in his seminal article, "As We May Think." Faceted search plays a key role in this program. Faceted search addresses weaknesses of conventional search approaches and has emerged as a foundation for interactive information retrieval. User studies demonstrate that faceted search provides more effective information-seeking support to users than best-first search. Indeed, faceted search has become increasingly prevalent in online information access systems, particularly for e-commerce and site search. In this lecture, we explore the history, theory, and practice of faceted search. Although we cannot hope to be exhaustive, our aim is to provide sufficient depth and breadth to offer a useful resource to both researchers and practitioners. Because faceted search is an area of interest to computer scientists, information scientists, interface designers, and usability researchers, we do not assume that the reader is a specialist in any of these fields. Rather, we offer a self-contained treatment of the topic, with an extensive bibliography for those who would like to pursue particular aspects in more depth.

  • As information becomes more ubiquitous and the demands that searchers have on search systems grow, there is a need to support search behaviors beyond simple lookup. Information seeking is the process or activity of attempting to obtain information in both human and technological contexts. Exploratory search describes an information-seeking problem context that is open-ended, persistent, and multifaceted, and information-seeking processes that are opportunistic, iterative, and multitactical. Exploratory searchers aim to solve complex problems and develop enhanced mental capacities. Exploratory search systems support this through symbiotic human-machine relationships that provide guidance in exploring unfamiliar information landscapes. Exploratory search has gained prominence in recent years. There is an increased interest from the information retrieval, information science, and human-computer interaction communities in moving beyond the traditional turn-taking interaction model supported by major Web search engines, and toward support for human intelligence amplification and information use. In this lecture, we introduce exploratory search, relate it to relevant extant research, outline the features of exploratory search systems, discuss the evaluation of these systems, and suggest some future directions for supporting exploratory search. Exploratory search is a new frontier in the search domain and is becoming increasingly important in shaping our future world.

  • We study the problem of answering ambiguous web queries in a setting where there exists a taxonomy of information, and that both queries and documents may belong to more than one category according to this taxonomy. We present a systematic approach to diversifying results that aims to minimize the risk of dissatisfaction of the average user. We propose an algorithm that well approximates this objective in general, and is provably optimal for a natural special case. Furthermore, we generalize several classical IR metrics, including NDCG, MRR, and MAP, to explicitly account for the value of diversification. We demonstrate empirically that our algorithm scores higher in these generalized metrics compared to results produced by commercial search engines.

Last update from database: 9/7/24, 6:42 AM (UTC)