Your search

Resource type
  • Introduction: The aim of the paper is to propose new models of information behaviour that extend the concept beyond simply information seeking to consider other modes of behaviour. The models chiefly explored are those of Wilson and Dervin. Argument: A shortcoming of some models of information behaviour is that they present a sequence of stages where it is evident that actual behaviour is not always sequential. In addition, information behaviour models tend to confine themselves to depictions of information seeking. Development: A model of "multi-directionality" is explored, to overcome the notion of sequential stages. Inspired by authors such as Chatman, Krikelas, and Savolainen, modes of information behaviour such as creating, destroying and avoiding information are included. Conclusion: New models of information behaviour are presented that replace the notion of "barriers" with the concept of "gap", as a means of integrating the views of Wilson and Dervin. The proposed models incorporate the notion of multi-directionality and identify ways in which an individual may navigate "gap" using modes of information behaviour beyond information seeking.

  • First, a new model of searching in online and other information systems, called ‘berrypicking’, is discussed. This model, it is argued, is much closer to the real behavior of information searchers than the traditional model of information retrieval is, and, consequently, will guide our thinking better in the design of effective interfaces. Second, the research literature of manual information seeking behavior is drawn on for suggestions of capabilities that users might like to have in online systems. Third, based on the new model and the research on information seeking, suggestions are made for how new search capabilities could be incorporated into the design of search interfaces. Particular attention is given to the nature and types of browsing that can be facilitated.

  • This paper reports on a novel technique for literature indexing and searching in a mechanized library system. The notion of relevance is taken as the key concept in the theory of information retrieval and a comparative concept of relevance is explicated in terms of the theory of probability. The resulting technique called “Probabilistic Indexing,” allows a computing machine, given a request for information, to make a statistical inference and derive a number (called the “relevance number”) for each document, which is a measure of the probability that the document will satisfy the given request. The result of a search is an ordered list of those documents which satisfy the request ranked according to their probable relevance. The paper goes on to show that whereas in a conventional library system the cross-referencing (“see” and “see also”) is based solely on the “semantical closeness” between index terms, statistical measures of closeness between index terms can be defined and computed. Thus, given an arbitrary request consisting of one (or many) index term(s), a machine can elaborate on it to increase the probability of selecting relevant documents that would not otherwise have been selected. Finally, the paper suggests an interpretation of the whole library problem as one where the request is considered as a clue on the basis of which the library system makes a concatenated statistical inference in order to provide as an output an ordered list of those documents which most probably satisfy the information needs of the user.

  • In a document retrieval, or other pattern matching environment where stored entities (documents) are compared with each other or with incoming patterns (search requests), it appears that the best indexing (property) space is one where each entity lies as far away from the others as possible; in these circumstances the value of an indexing system may be expressible as a function of the density of the object space; in particular, retrieval performance may correlate inversely with space density. An approach based on space density computations is used to choose an optimum indexing vocabulary for a collection of documents. Typical evaluation results are shown, demonstating the usefulness of the model.

  • Classic IR (information retrieval) is inherently predicated on users searching for information, the so-called "information need". But the need behind a web search is often not informational -- it might be navigational (give me the url of the site I want to reach) or transactional (show me sites where I can perform a certain transaction, e.g. shop, download a file, or find a map). We explore this taxonomy of web searches and discuss how global search engines evolved to deal with web-specific needs.

  • Learning to rank for Information Retrieval (IR) is a task to automatically construct a ranking model using training data, such that the model can sort new objects according to their degrees of relevance, preference, or importance. Many IR problems are by nature ranking problems, and many IR technologies can be potentially enhanced by using learning-to-rank techniques. The objective of this tutorial is to give an introduction to this research direction. Specifically, the existing learning-to-rank algorithms are reviewed and categorized into three approaches: the pointwise, pairwise, and listwise approaches. The advantages and disadvantages with each approach are analyzed, and the relationships between the loss functions used in these approaches and IR evaluation measures are discussed. Then the empirical evaluations on typical learning-to-rank methods are shown, with the LETOR collection as a benchmark dataset, which seems to suggest that the listwise approach be the most effective one among all the approaches. After that, a statistical ranking theory is introduced, which can describe different learning-to-rank algorithms, and be used to analyze their query-level generalization abilities. At the end of the tutorial, we provide a summary and discuss potential future work on learning to rank.

  • In studying actual Web searching by the public at large, we analyzed over one million Web queries by users of the Excite search engine. We found that most people use few search terms, few modified queries, view few Web pages, and rarely use advanced search features. A small number of search terms are used with high frequency, and a great many terms are unique; the language of Web queries is distinctive. Queries about recreation and entertainment rank highest. Findings are compared to data from two other large studies of Web queries. This study provides an insight into the public practices and choices in Web searching.

  • We analyzed transaction logs containing 51,473 queries posed by 18,113 users of Excite, a major Internet search service. We provide data on: (i) sessions — changes in queries during a session, number of pages viewed, and use of relevance feedback; (ii) queries — the number of search terms, and the use of logic and modifiers; and (iii) terms — their rank/frequency distribution and the most highly used search terms. We then shift the focus of analysis from the query to the user to gain insight to the characteristics of the Web user. With these characteristics as a basis, we then conducted a failure analysis, identifying trends among user mistakes. We conclude with a summary of findings and a discussion of the implications of these findings.

  • In this paper we present an analysis of an AltaVista Search Engine query log consisting of approximately 1 billion entries for search requests over a period of six weeks. This represents almost 285 million user sessions, each an attempt to fill a single information need. We present an analysis of individual queries, query duplication, and query sessions. We also present results of a correlation analysis of the log entries, studying the interaction of terms within queries. Our data supports the conjecture that web users differ significantly from the user assumed in the standard information retrieval literature. Specifically, we show that web users type in short queries, mostly look at the first 10 results only, and seldom modify the query. This suggests that traditional information retrieval techniques may not work well for answering web search requests. The correlation analysis showed that the most highly correlated items are constituents of phrases. This result indicates it may be useful for search engines to consider search terms as parts of phrases even if the user did not explicitly specify them as such.

  • Of growing interest in the area of improving the search experience is the collection of implicit user behavior measures (implicit measures) as indications of user interest and user satisfaction. Rather than having to submit explicit user feedback, which can be costly in time and resources and alter the pattern of use within the search experience, some research has explored the collection of implicit measures as an efficient and useful alternative to collecting explicit measure of interest from users.This research article describes a recent study with two main objectives. The first was to test whether there is an association between explicit ratings of user satisfaction and implicit measures of user interest. The second was to understand what implicit measures were most strongly associated with user satisfaction. The domain of interest was Web search. We developed an instrumented browser to collect a variety of measures of user activity and also to ask for explicit judgments of the relevance of individual pages visited and entire search sessions. The data was collected in a workplace setting to improve the generalizability of the results.Results were analyzed using traditional methods (e.g., Bayesian modeling and decision trees) as well as a new usage behavior pattern analysis (“gene analysis”). We found that there was an association between implicit measures of user activity and the user's explicit satisfaction ratings. The best models for individual pages combined clickthrough, time spent on the search result page, and how a user exited a result or ended a search session (exit type/end action). Behavioral patterns (through the gene analysis) can also be used to predict user satisfaction for search sessions.

  • The use of data stored in transaction logs of Web search engines, Intranets, and Web sites can provide valuable insight into understanding the information-searching process of online searchers. This understanding can enlighten information system design, interface development, and devising the information architecture for content collections. This article presents a review and foundation for conducting Web search transaction log analysis. A methodology is outlined consisting of three stages, which are collection, preparation, and analysis. The three stages of the methodology are presented in detail with discussions of goals, metrics, and processes at each stage. Critical terms in transaction log analysis for Web searching are defined. The strengths and limitations of transaction log analysis as a research method are presented. An application to log client-side interactions that supplements transaction logs is reported on, and the application is made available for use by the research community. Suggestions are provided on ways to leverage the strengths of, while addressing the limitations of, transaction log analysis for Web-searching research. Finally, a complete flat text transaction log from a commercial search engine is available as supplementary material with this manuscript.

  • In this paper, we define and present a comprehensive classification of user intent for Web searching. The classification consists of three hierarchical levels of informational, navigational, and transactional intent. After deriving attributes of each, we then developed a software application that automatically classified queries using a Web search engine log of over a million and a half queries submitted by several hundred thousand users. Our findings show that more than 80% of Web queries are informational in nature, with about 10% each being navigational and transactional. In order to validate the accuracy of our algorithm, we manually coded 400 queries and compared the results from this manual classification to the results determined by the automated method. This comparison showed that the automatic classification has an accuracy of 74%. Of the remaining 25% of the queries, the user intent is vague or multi-faceted, pointing to the need for probabilistic classification. We discuss how search engines can use knowledge of user intent to provide more targeted and relevant results in Web searching.

  • This paper provides overview and instruction regarding the evaluation of interactive information retrieval systems with users. The primary goal of this article is to catalog and compile material related to this topic into a single source. This article (1) provides historical background on the development of user-centered approaches to the evaluation of interactive information retrieval systems; (2) describes the major components of interactive information retrieval system evaluation; (3) describes different experimental designs and sampling strategies; (4) presents core instruments and data collection techniques and measures; (5) explains basic data analysis techniques; and (4) reviews and discusses previous studies. This article also discusses validity and reliability issues with respect to both measures and methods, presents background information on research ethics and discusses some ethical issues which are specific to studies of interactive information retrieval (IIR). Finally, this article concludes with a discussion of outstanding challenges and future research directions.

  • The goal of the Redundancy, Diversity, and Interdependent Document Relevance workshop was to explore how ranking, performance assessment and learning to rank can move beyond the assumption that the relevance of a document is independent of other documents. In particular, the workshop focussed on three themes: the effect of redundancy on information retrieval utility (for example, minimizing the wasted effort of users who must skip redundant information), the role of diversity (for example, for mitigating the risk of misinterpreting ambiguous queries), and algorithms for set-level optimization (where the quality of a set of retrieved documents is not simply the sum of its parts). This workshop built directly upon the Beyond Binary Relevance: Preferences, Diversity and Set-Level Judgments workshop at SIGIR 2008 [3], shifting focus to address the questions left open by the discussions and results from that workshop. As such, it was the first workshop to explicitly focus on the related research challenges of redundancy, diversity, and interdependent relevance – all of which require novel performance measures, learning methods, and evaluation techniques. The workshop program committee consisted of 15 researchers from academia and industry, with experience in IR evaluation, machine learning, and IR algorithmic design. Over 40 people attended the workshop. This report aims to summarize the workshop, and also to systematize common themes and key concepts so as to encourage research in the three workshop themes. It contains our attempt to summarize and organize the topics that came up in presentations as well as in discussions, pulling out common elements. Many audience members contributed, yet due to the free-flowing discussion, attributing all the observations to particular audience members is unfortunately impossible. Not all audience members would necessarily agree with the views presented, but we do attempt to present a consensus view as far as possible.

  • The Probabilistic Relevance Framework (PRF) is a formal framework for document retrieval, grounded in work done in the 1970–1980s, which led to the development of one of the most successful text-retrieval algorithms, BM25. In recent years, research in the PRF has yielded new retrieval models capable of taking into account document meta-data (especially structure and link-graph information). Again, this has led to one of the most successful Web-search and corporate-search algorithms, BM25F. This work presents the PRF from a conceptual point of view, describing the probabilistic modelling assumptions behind the framework and the different ranking algorithms that result from its application: the binary independence model, relevance feedback models, BM25 and BM25F. It also discusses the relation between the PRF and other statistical models for IR, and covers some related topics, such as the use of non-textual features, and parameter optimisation for models with free parameters.

  • As information becomes more ubiquitous and the demands that searchers have on search systems grow, there is a need to support search behaviors beyond simple lookup. Information seeking is the process or activity of attempting to obtain information in both human and technological contexts. Exploratory search describes an information-seeking problem context that is open-ended, persistent, and multifaceted, and information-seeking processes that are opportunistic, iterative, and multitactical. Exploratory searchers aim to solve complex problems and develop enhanced mental capacities. Exploratory search systems support this through symbiotic human-machine relationships that provide guidance in exploring unfamiliar information landscapes. Exploratory search has gained prominence in recent years. There is an increased interest from the information retrieval, information science, and human-computer interaction communities in moving beyond the traditional turn-taking interaction model supported by major Web search engines, and toward support for human intelligence amplification and information use. In this lecture, we introduce exploratory search, relate it to relevant extant research, outline the features of exploratory search systems, discuss the evaluation of these systems, and suggest some future directions for supporting exploratory search. Exploratory search is a new frontier in the search domain and is becoming increasingly important in shaping our future world.

  • In 1975 Tefko Saracevic declared “the subject knowledge view” to be the most fundamental perspective of relevance. This paper examines the assumptions in different views of relevance, including “the system's view” and “the user's view” and offers a reinterpretation of these views. The paper finds that what was regarded as the most fundamental view by Saracevic in 1975 has not since been considered (with very few exceptions). Other views, which are based on less fruitful assumptions, have dominated the discourse on relevance in information retrieval and information science. Many authors have reexamined the concept of relevance in information science, but have neglected the subject knowledge view, hence basic theoretical assumptions seem not to have been properly addressed. It is as urgent now as it was in 1975 seriously to consider “the subject knowledge view” of relevance (which may also be termed “the epistemological view”). The concept of relevance, like other basic concepts, is influenced by overall approaches to information science, such as the cognitive view and the domain-analytic view. There is today a trend toward a social paradigm for information science. This paper offers an understanding of relevance from such a social point of view.

  • Relevance is a fundamental, though not completely understood, concept for documentation, information science, and information retrieval. This article presents the history of relevance through an exhaustive review of the literature. Such history being very complex (about 160 papers are discussed), it is not simple to describe it in a comprehensible way. Thus, first of all a framework for establishing a common ground is defined, and then the history itself is illustrated via the presentation in chronological order of the papers on relevance. The history is divided into three periods (“Before 1958,” “1959–1976,” and “1977–present”) and, inside each period, the papers on relevance are analyzed under seven different aspects (methodological foundations, different kinds of relevance, beyond-topical criteria adopted by users, modes for expression of the relevance judgment, dynamic nature of relevance, types of document representation, and agreement among different judges). © 1997 John Wiley & Sons, Inc.

  • All is flux. —Plato on Knowledge in the Theaetetus (about 369 BC) Relevance is a, if not even the, key notion in information science in general and information retrieval in particular. This two-part critical review traces and synthesizes the scholarship on relevance over the past 30 years or so and provides an updated framework within which the still widely dissonant ideas and works about relevance might be interpreted and related. It is a continuation and update of a similar review that appeared in 1975 under the same title, considered here as being Part I. The present review is organized in two parts: Part II addresses the questions related to nature and manifestations of relevance, and Part III addresses questions related to relevance behavior and effects. In Part II, the nature of relevance is discussed in terms of meaning ascribed to relevance, theories used or proposed, and models that have been developed. The manifestations of relevance are classified as to several kinds of relevance that form an interdependent system of relevancies. In Part III, relevance behavior and effects are synthesized using experimental and observational works that incorporated data. In both parts, each section concludes with a summary that in effect provides an interpretation and synthesis of contemporary thinking on the topic treated or suggests hypotheses for future research. Analyses of some of the major trends that shape relevance work are offered in conclusions.

  • The objectives of the study were to conduct a series of observations and experiments under as real-life a situation as possible related to: (1) user context of questions in information retrieval; (2) the structure and classification of questions; (3) cognitive traits and decision making of searchers; and (4) different searches of the same question. The study is presented in three parts: Part I presents the background of the study and describes the models, measures, methods, procedures and statistical analyses used. Part II is devoted to results related to users, questions and effectiveness measures, and Part III to results related to searchers, searches and overlap studies. A concluding summary of all results is presented in Part III. © 1988 John Wiley & Sons, Inc.

Last update from database: 7/10/25, 6:42 AM (UTC)