Your search

In authors or contributors
  • This paper presents an approach to automatically optimizing the retrieval quality of search engines using clickthrough data. Intuitively, a good information retrieval system should present relevant documents high in the ranking, with less relevant documents following below. While previous approaches to learning retrieval functions from examples exist, they typically require training data generated from relevance judgments by experts. This makes them difficult and expensive to apply. The goal of this paper is to develop a method that utilizes clickthrough data for training, namely the query-log of the search engine in connection with the log of links the users clicked on in the presented ranking. Such clickthrough data is available in abundance and can be recorded at very low cost. Taking a Support Vector Machine (SVM) approach, this paper presents a method for learning retrieval functions. From a theoretical perspective, this method is shown to be well-founded in a risk minimization framework. Furthermore, it is shown to be feasible even for large sets of queries and features. The theoretical results are verified in a controlled experiment. It shows that the method can effectively adapt the retrieval function of a meta-search engine to a particular group of users, outperforming Google in terms of retrieval quality after only a couple of hundred training examples.

  • The goal of the Redundancy, Diversity, and Interdependent Document Relevance workshop was to explore how ranking, performance assessment and learning to rank can move beyond the assumption that the relevance of a document is independent of other documents. In particular, the workshop focussed on three themes: the effect of redundancy on information retrieval utility (for example, minimizing the wasted effort of users who must skip redundant information), the role of diversity (for example, for mitigating the risk of misinterpreting ambiguous queries), and algorithms for set-level optimization (where the quality of a set of retrieved documents is not simply the sum of its parts). This workshop built directly upon the Beyond Binary Relevance: Preferences, Diversity and Set-Level Judgments workshop at SIGIR 2008 [3], shifting focus to address the questions left open by the discussions and results from that workshop. As such, it was the first workshop to explicitly focus on the related research challenges of redundancy, diversity, and interdependent relevance – all of which require novel performance measures, learning methods, and evaluation techniques. The workshop program committee consisted of 15 researchers from academia and industry, with experience in IR evaluation, machine learning, and IR algorithmic design. Over 40 people attended the workshop. This report aims to summarize the workshop, and also to systematize common themes and key concepts so as to encourage research in the three workshop themes. It contains our attempt to summarize and organize the topics that came up in presentations as well as in discussions, pulling out common elements. Many audience members contributed, yet due to the free-flowing discussion, attributing all the observations to particular audience members is unfortunately impossible. Not all audience members would necessarily agree with the views presented, but we do attempt to present a consensus view as far as possible.

  • This paper examines the reliability of implicit feedback generated from clickthrough data in WWW search. Analyzing the users' decision process using eyetracking and comparing implicit feedback against manual relevance judgments, we conclude that clicks are informative but biased. While this makes the interpretation of clicks as absolute relevance judgments difficult, we show that relative preferences derived from clicks are reasonably accurate on average.

Last update from database: 12/26/24, 7:42 AM (UTC)

Explore

Field of study

Resource type

Resource language