Your search

Results 34 resources

  • Classic IR (information retrieval) is inherently predicated on users searching for information, the so-called "information need". But the need behind a web search is often not informational -- it might be navigational (give me the url of the site I want to reach) or transactional (show me sites where I can perform a certain transaction, e.g. shop, download a file, or find a map). We explore this taxonomy of web searches and discuss how global search engines evolved to deal with web-specific needs.

  • This paper examines the reliability of implicit feedback generated from clickthrough data in WWW search. Analyzing the users' decision process using eyetracking and comparing implicit feedback against manual relevance judgments, we conclude that clicks are informative but biased. While this makes the interpretation of clicks as absolute relevance judgments difficult, we show that relative preferences derived from clicks are reasonably accurate on average.

  • Understanding user intent is key to designing an effective ranking system in a search engine. In the absence of any explicit knowledge of user intent, search engines want to diversify results to improve user satisfaction. In such a setting, the probability ranking principle-based approach of presenting the most relevant results on top can be sub-optimal, and hence the search engine would like to trade-off relevance for diversity in the results. In analogy to prior work on ranking and clustering systems, we use the axiomatic approach to characterize and design diversification systems. We develop a set of natural axioms that a diversification system is expected to satisfy, and show that no diversification function can satisfy all the axioms simultaneously. We illustrate the use of the axiomatic framework by providing three example diversification objectives that satisfy different subsets of the axioms. We also uncover a rich link to the facility dispersion problem that results in algorithms for a number of diversification objectives. Finally, we propose an evaluation methodology to characterize the objectives and the underlying axioms. We conduct a large scale evaluation of our objectives based on two data sets: a data set derived from the Wikipedia disambiguation pages and a product database.

  • Introduction: The aim of the paper is to propose new models of information behaviour that extend the concept beyond simply information seeking to consider other modes of behaviour. The models chiefly explored are those of Wilson and Dervin. Argument: A shortcoming of some models of information behaviour is that they present a sequence of stages where it is evident that actual behaviour is not always sequential. In addition, information behaviour models tend to confine themselves to depictions of information seeking. Development: A model of "multi-directionality" is explored, to overcome the notion of sequential stages. Inspired by authors such as Chatman, Krikelas, and Savolainen, modes of information behaviour such as creating, destroying and avoiding information are included. Conclusion: New models of information behaviour are presented that replace the notion of "barriers" with the concept of "gap", as a means of integrating the views of Wilson and Dervin. The proposed models incorporate the notion of multi-directionality and identify ways in which an individual may navigate "gap" using modes of information behaviour beyond information seeking.

  • Purpose – This paper aims to provide an overview of principles and procedures involved in creating a faceted classification scheme for use in resource discovery in an online environment. Design/methodology/approach – Facet analysis provides an established rigorous methodology for the conceptual organization of a subject field, and the structuring of an associated classification or controlled vocabulary. This paper explains how that methodology was applied to the humanities in the FATKS project, where the objective was to explore the potential of facet analytical theory for creating a controlled vocabulary for the humanities, and to establish the requirements of a faceted classification appropriate to an online environment. A detailed faceted vocabulary was developed for two areas of the humanities within a broader facet framework for the whole of knowledge. Research issues included how to create a data model which made the faceted structure explicit and machine-readable and provided for its further development and use. Findings – In order to support easy facet combination in indexing, and facet searching and browsing on the interface, faceted classification requires a formalized data structure and an appropriate tool for its management. The conceptual framework of a faceted system proper can be applied satisfactorily to humanities, and fully integrated within a vocabulary management system. Research limitations/implications – The procedures described in this paper are concerned only with the structuring of the classification, and do not extend to indexing, retrieval and application issues. Practical implications – Many stakeholders in the domain of resource discovery consider developing their own classification system and supporting tools. The methods described in this paper may clarify the process of building a faceted classification and may provide some useful ideas with respect to the vocabulary maintenance tool. Originality/value – As far as the authors are aware there is no comparable research in this area.

  • This paper presents interface design recommendations for faceted navigation systems, based on 13 years of experience in experimenting with and evaluating such designs.

  • In this paper, we define and present a comprehensive classification of user intent for Web searching. The classification consists of three hierarchical levels of informational, navigational, and transactional intent. After deriving attributes of each, we then developed a software application that automatically classified queries using a Web search engine log of over a million and a half queries submitted by several hundred thousand users. Our findings show that more than 80% of Web queries are informational in nature, with about 10% each being navigational and transactional. In order to validate the accuracy of our algorithm, we manually coded 400 queries and compared the results from this manual classification to the results determined by the automated method. This comparison showed that the automatic classification has an accuracy of 74%. Of the remaining 25% of the queries, the user intent is vague or multi-faceted, pointing to the need for probabilistic classification. We discuss how search engines can use knowledge of user intent to provide more targeted and relevant results in Web searching.

  • We study the problem of answering ambiguous web queries in a setting where there exists a taxonomy of information, and that both queries and documents may belong to more than one category according to this taxonomy. We present a systematic approach to diversifying results that aims to minimize the risk of dissatisfaction of the average user. We propose an algorithm that well approximates this objective in general, and is provably optimal for a natural special case. Furthermore, we generalize several classical IR metrics, including NDCG, MRR, and MAP, to explicitly account for the value of diversification. We demonstrate empirically that our algorithm scores higher in these generalized metrics compared to results produced by commercial search engines.

  • Of growing interest in the area of improving the search experience is the collection of implicit user behavior measures (implicit measures) as indications of user interest and user satisfaction. Rather than having to submit explicit user feedback, which can be costly in time and resources and alter the pattern of use within the search experience, some research has explored the collection of implicit measures as an efficient and useful alternative to collecting explicit measure of interest from users.This research article describes a recent study with two main objectives. The first was to test whether there is an association between explicit ratings of user satisfaction and implicit measures of user interest. The second was to understand what implicit measures were most strongly associated with user satisfaction. The domain of interest was Web search. We developed an instrumented browser to collect a variety of measures of user activity and also to ask for explicit judgments of the relevance of individual pages visited and entire search sessions. The data was collected in a workplace setting to improve the generalizability of the results.Results were analyzed using traditional methods (e.g., Bayesian modeling and decision trees) as well as a new usage behavior pattern analysis (“gene analysis”). We found that there was an association between implicit measures of user activity and the user's explicit satisfaction ratings. The best models for individual pages combined clickthrough, time spent on the search result page, and how a user exited a result or ended a search session (exit type/end action). Behavioral patterns (through the gene analysis) can also be used to predict user satisfaction for search sessions.

  • As information becomes more ubiquitous and the demands that searchers have on search systems grow, there is a need to support search behaviors beyond simple lookup. Information seeking is the process or activity of attempting to obtain information in both human and technological contexts. Exploratory search describes an information-seeking problem context that is open-ended, persistent, and multifaceted, and information-seeking processes that are opportunistic, iterative, and multitactical. Exploratory searchers aim to solve complex problems and develop enhanced mental capacities. Exploratory search systems support this through symbiotic human-machine relationships that provide guidance in exploring unfamiliar information landscapes. Exploratory search has gained prominence in recent years. There is an increased interest from the information retrieval, information science, and human-computer interaction communities in moving beyond the traditional turn-taking interaction model supported by major Web search engines, and toward support for human intelligence amplification and information use. In this lecture, we introduce exploratory search, relate it to relevant extant research, outline the features of exploratory search systems, discuss the evaluation of these systems, and suggest some future directions for supporting exploratory search. Exploratory search is a new frontier in the search domain and is becoming increasingly important in shaping our future world.

  • The article describes the nature of a faceted classification, and its application in document retrieval. The kinds of facet used are illustrated. Procedures are then discussed for identifying facets in a subject field, populating the facets with individual subject terms, arranging these in helpful sequences, using the scheme to classify documents, and searching the resultant classified index, with particular reference to Internet search.

  • There are currently two dominant interface types for searching and browsing large image collections: keyword-based search, and searching by overall similarity to sample images. We present an alternative based on enabling users to navigate along conceptual dimensions that describe the images. The interface makes use of hierarchical faceted metadata and dynamically generated query previews. A usability study, in which 32 art history students explored a collection of 35,000 fine arts images, compares this approach to a standard image search interface. Despite the unfamiliarity and power of the interface (attributes that often lead to rejection of new search interfaces), the study results show that 90% of the participants preferred the metadata approach overall, 97% said that it helped them learn more about the collection, 75% found it more flexible, and 72% found it easier to use than a standard baseline system. These results indicate that a category-based approach is a successful way to provide access to image collections.

  • We live in an information age that requires us, more than ever, to represent, access, and use information. Over the last several decades, we have developed a modern science and technology for information retrieval, relentlessly pursuing the vision of a "memex" that Vannevar Bush proposed in his seminal article, "As We May Think." Faceted search plays a key role in this program. Faceted search addresses weaknesses of conventional search approaches and has emerged as a foundation for interactive information retrieval. User studies demonstrate that faceted search provides more effective information-seeking support to users than best-first search. Indeed, faceted search has become increasingly prevalent in online information access systems, particularly for e-commerce and site search. In this lecture, we explore the history, theory, and practice of faceted search. Although we cannot hope to be exhaustive, our aim is to provide sufficient depth and breadth to offer a useful resource to both researchers and practitioners. Because faceted search is an area of interest to computer scientists, information scientists, interface designers, and usability researchers, we do not assume that the reader is a specialist in any of these fields. Rather, we offer a self-contained treatment of the topic, with an extensive bibliography for those who would like to pursue particular aspects in more depth.

  • Designing a search system and interface may best be served (and executed) by scrutinizing usability studies.

  • One of the most pressing usability issues in the design of large web sites is that of the organization of search results. A previous study on a moderate-sized web site indicated that users understood and preferred dynamically organized faceted metadata over standard search. We are now examining how to scale this approach to very large collections, since it is difficult to present hierarchical faceted metadata in a manner appealing and understandable to general users. We have iteratively designed and tested interfaces that address these design challenges; the most recent version is receiving enthusiastic responses in ongoing usability studies.

  • We show that incorporating user behavior data can significantly improve ordering of top results in real web search setting. We examine alternatives for incorporating feedback into the ranking process and explore the contributions of user feedback compared to other common web search features. We report results of a large scale evaluation over 3,000 queries and 12 million user interactions with a popular web search engine. We show that incorporating implicit feedback can augment other features, improving the accuracy of a competitive web search ranking algorithms by as much as 31% relative to the original performance.

  • Learning to rank for Information Retrieval (IR) is a task to automatically construct a ranking model using training data, such that the model can sort new objects according to their degrees of relevance, preference, or importance. Many IR problems are by nature ranking problems, and many IR technologies can be potentially enhanced by using learning-to-rank techniques. The objective of this tutorial is to give an introduction to this research direction. Specifically, the existing learning-to-rank algorithms are reviewed and categorized into three approaches: the pointwise, pairwise, and listwise approaches. The advantages and disadvantages with each approach are analyzed, and the relationships between the loss functions used in these approaches and IR evaluation measures are discussed. Then the empirical evaluations on typical learning-to-rank methods are shown, with the LETOR collection as a benchmark dataset, which seems to suggest that the listwise approach be the most effective one among all the approaches. After that, a statistical ranking theory is introduced, which can describe different learning-to-rank algorithms, and be used to analyze their query-level generalization abilities. At the end of the tutorial, we provide a summary and discuss potential future work on learning to rank.

  • This paper provides overview and instruction regarding the evaluation of interactive information retrieval systems with users. The primary goal of this article is to catalog and compile material related to this topic into a single source. This article (1) provides historical background on the development of user-centered approaches to the evaluation of interactive information retrieval systems; (2) describes the major components of interactive information retrieval system evaluation; (3) describes different experimental designs and sampling strategies; (4) presents core instruments and data collection techniques and measures; (5) explains basic data analysis techniques; and (4) reviews and discusses previous studies. This article also discusses validity and reliability issues with respect to both measures and methods, presents background information on research ethics and discusses some ethical issues which are specific to studies of interactive information retrieval (IIR). Finally, this article concludes with a discussion of outstanding challenges and future research directions.

Last update from database: 4/23/24, 6:42 AM (UTC)