Your search

Publication year

Results 47 resources

  • We show that incorporating user behavior data can significantly improve ordering of top results in real web search setting. We examine alternatives for incorporating feedback into the ranking process and explore the contributions of user feedback compared to other common web search features. We report results of a large scale evaluation over 3,000 queries and 12 million user interactions with a popular web search engine. We show that incorporating implicit feedback can augment other features, improving the accuracy of a competitive web search ranking algorithms by as much as 31% relative to the original performance.

  • We study the problem of answering ambiguous web queries in a setting where there exists a taxonomy of information, and that both queries and documents may belong to more than one category according to this taxonomy. We present a systematic approach to diversifying results that aims to minimize the risk of dissatisfaction of the average user. We propose an algorithm that well approximates this objective in general, and is provably optimal for a natural special case. Furthermore, we generalize several classical IR metrics, including NDCG, MRR, and MAP, to explicitly account for the value of diversification. We demonstrate empirically that our algorithm scores higher in these generalized metrics compared to results produced by commercial search engines.

  • Classic IR (information retrieval) is inherently predicated on users searching for information, the so-called "information need". But the need behind a web search is often not informational -- it might be navigational (give me the url of the site I want to reach) or transactional (show me sites where I can perform a certain transaction, e.g. shop, download a file, or find a map). We explore this taxonomy of web searches and discuss how global search engines evolved to deal with web-specific needs.

  • The Classification Research Group manifesto of 1955, 'Faceted classification as the basis of all information retrieval', has been at least in part achieved, and there is much evidence of faceted classification influencing a whole range of modern information retrieval tools. This paper examines the theory underlying faceted classification, how and why it has been taken up so widely, and what benefits it brings to the activity of knowledge organization. The role of facet analysis as a general research tool is also considered, and how it compares with other content analysis tools as a means of modelling subject domains.

  • Purpose – The aim of this article is to estimate the impact of faceted classification and the faceted analytical method on the development of various information retrieval tools over the latter part of the twentieth and early twenty‐first centuries. Design/methodology/approach – The article presents an examination of various subject access tools intended for retrieval of both print and digital materials to determine whether they exhibit features of faceted systems. Some attention is paid to use of the faceted approach as a means of structuring information on commercial web sites. The secondary and research literature is also surveyed for commentary on and evaluation of facet analysis as a basis for the building of vocabulary and conceptual tools. Findings – The study finds that faceted systems are now very common, with a major increase in their use over the last 15 years. Most LIS subject indexing tools (classifications, subject heading lists and thesauri) now demonstrate features of facet analysis to a greater or lesser degree. A faceted approach is frequently taken to the presentation of product information on commercial web sites, and there is an independent strand of theory and documentation related to this application. There is some significant research on semi‐automatic indexing and retrieval (query expansion and query formulation) using facet analytical techniques. Originality/value – This article provides an overview of an important conceptual approach to information retrieval, and compares different understandings and applications of this methodology.

  • Purpose – This paper aims to provide an overview of principles and procedures involved in creating a faceted classification scheme for use in resource discovery in an online environment. Design/methodology/approach – Facet analysis provides an established rigorous methodology for the conceptual organization of a subject field, and the structuring of an associated classification or controlled vocabulary. This paper explains how that methodology was applied to the humanities in the FATKS project, where the objective was to explore the potential of facet analytical theory for creating a controlled vocabulary for the humanities, and to establish the requirements of a faceted classification appropriate to an online environment. A detailed faceted vocabulary was developed for two areas of the humanities within a broader facet framework for the whole of knowledge. Research issues included how to create a data model which made the faceted structure explicit and machine-readable and provided for its further development and use. Findings – In order to support easy facet combination in indexing, and facet searching and browsing on the interface, faceted classification requires a formalized data structure and an appropriate tool for its management. The conceptual framework of a faceted system proper can be applied satisfactorily to humanities, and fully integrated within a vocabulary management system. Research limitations/implications – The procedures described in this paper are concerned only with the structuring of the classification, and do not extend to indexing, retrieval and application issues. Practical implications – Many stakeholders in the domain of resource discovery consider developing their own classification system and supporting tools. The methods described in this paper may clarify the process of building a faceted classification and may provide some useful ideas with respect to the vocabulary maintenance tool. Originality/value – As far as the authors are aware there is no comparable research in this area.

  • Information retrieval is the foundation for modern search engines. This textbook offers an introduction to the core topics underlying modern search technologies, including algorithms, data structures, indexing, retrieval, and evaluation. The emphasis is on implementation and experimentation; each chapter includes exercises and suggestions for student projects. Wumpus -- a multiuser open-source information retrieval system developed by one of the authors and available online -- provides model implementations and a basis for student work. The modular structure of the book allows instructors to use it in a variety of graduate-level courses, including courses taught from a database systems perspective, traditional information retrieval courses with a focus on IR theory, and courses covering the basics of Web retrieval. In addition to its classroom use, Information Retrieval will be a valuable reference for professionals in computer science, computer engineering, and software engineering.

  • Traditional editorial effectiveness measures, such as nDCG, remain standard for Web search evaluation. Unfortunately, these traditional measures can inappropriately reward redundant information and can fail to reflect the broad range of user needs that can underlie a Web query. To address these deficiencies, several researchers have recently proposed effectiveness measures for novelty and diversity. Many of these measures are based on simple cascade models of user behavior, which operate by considering the relationship between successive elements of a result list. The properties of these measures are still poorly understood, and it is not clear from prior research that they work as intended. In this paper we examine the properties and performance of cascade measures with the goal of validating them as tools for measuring effectiveness. We explore their commonalities and differences, placing them in a unified framework; we discuss their theoretical difficulties and limitations, and compare the measures experimentally, contrasting them against traditional measures and against other approaches to measuring novelty. Data collected by the TREC 2009 Web Track is used as the basis for our experimental comparison. Our results indicate that these measures reward systems that achieve an balance between novelty and overall precision in their result lists, as intended. Nonetheless, other measures provide insights not captured by the cascade measures, and we suggest that future evaluation efforts continue to report a variety of measures.

  • Evaluation measures act as objective functions to be optimized by information retrieval systems. Such objective functions must accurately reflect user requirements, particularly when tuning IR systems and learning ranking functions. Ambiguity in queries and redundancy in retrieved documents are poorly reflected by current evaluation measures. In this paper, we present a framework for evaluation that systematically rewards novelty and diversity. We develop this framework into a specific evaluation measure, based on cumulative gain. We demonstrate the feasibility of our approach using a test collection based on the TREC question answering track.

  • One of the most pressing usability issues in the design of large web sites is that of the organization of search results. A previous study on a moderate-sized web site indicated that users understood and preferred dynamically organized faceted metadata over standard search. We are now examining how to scale this approach to very large collections, since it is difficult to present hierarchical faceted metadata in a manner appealing and understandable to general users. We have iteratively designed and tested interfaces that address these design challenges; the most recent version is receiving enthusiastic responses in ongoing usability studies.

  • Faceted browsing is a common feature of new library catalog interfaces. But to what extent does it improve user performance in searching within today’s library catalog systems? This article reviews the literature for user studies involving faceted browsing and user studies of “next-generation” library catalogs that incorporate faceted browsing. Both the results and the methods of these studies are analyzed by asking, What do we currently know about faceted browsing? How can we design better studies of faceted browsing in library catalogs? The article proposes methodological considerations for practicing librarians and provides examples of goals, tasks, and measurements for user studies of faceted browsing in library catalogs.

  • Of growing interest in the area of improving the search experience is the collection of implicit user behavior measures (implicit measures) as indications of user interest and user satisfaction. Rather than having to submit explicit user feedback, which can be costly in time and resources and alter the pattern of use within the search experience, some research has explored the collection of implicit measures as an efficient and useful alternative to collecting explicit measure of interest from users.This research article describes a recent study with two main objectives. The first was to test whether there is an association between explicit ratings of user satisfaction and implicit measures of user interest. The second was to understand what implicit measures were most strongly associated with user satisfaction. The domain of interest was Web search. We developed an instrumented browser to collect a variety of measures of user activity and also to ask for explicit judgments of the relevance of individual pages visited and entire search sessions. The data was collected in a workplace setting to improve the generalizability of the results.Results were analyzed using traditional methods (e.g., Bayesian modeling and decision trees) as well as a new usage behavior pattern analysis (“gene analysis”). We found that there was an association between implicit measures of user activity and the user's explicit satisfaction ratings. The best models for individual pages combined clickthrough, time spent on the search result page, and how a user exited a result or ended a search session (exit type/end action). Behavioral patterns (through the gene analysis) can also be used to predict user satisfaction for search sessions.

  • Introduction: The aim of the paper is to propose new models of information behaviour that extend the concept beyond simply information seeking to consider other modes of behaviour. The models chiefly explored are those of Wilson and Dervin. Argument: A shortcoming of some models of information behaviour is that they present a sequence of stages where it is evident that actual behaviour is not always sequential. In addition, information behaviour models tend to confine themselves to depictions of information seeking. Development: A model of "multi-directionality" is explored, to overcome the notion of sequential stages. Inspired by authors such as Chatman, Krikelas, and Savolainen, modes of information behaviour such as creating, destroying and avoiding information are included. Conclusion: New models of information behaviour are presented that replace the notion of "barriers" with the concept of "gap", as a means of integrating the views of Wilson and Dervin. The proposed models incorporate the notion of multi-directionality and identify ways in which an individual may navigate "gap" using modes of information behaviour beyond information seeking.

  • The presented ontology-based model for indexing and retrieval combines the methods and experiences of traditional indexing languages with their cognitively interpreted entities and relationships with the strengths and possibilities of formal knowledge representation. The core component of the model uses inferences along the paths of typed relations between the entities of a knowledge representation for enabling the determination of result sets in the context of retrieval processes. A proposal for a general, but condensed, inventory of typed relations is given. The entities are arranged in aspect-oriented facets to ensure a consistent hierarchical structure. The possible consequences for indexing and retrieval are discussed.

  • Understanding user intent is key to designing an effective ranking system in a search engine. In the absence of any explicit knowledge of user intent, search engines want to diversify results to improve user satisfaction. In such a setting, the probability ranking principle-based approach of presenting the most relevant results on top can be sub-optimal, and hence the search engine would like to trade-off relevance for diversity in the results. In analogy to prior work on ranking and clustering systems, we use the axiomatic approach to characterize and design diversification systems. We develop a set of natural axioms that a diversification system is expected to satisfy, and show that no diversification function can satisfy all the axioms simultaneously. We illustrate the use of the axiomatic framework by providing three example diversification objectives that satisfy different subsets of the axioms. We also uncover a rich link to the facility dispersion problem that results in algorithms for a number of diversification objectives. Finally, we propose an evaluation methodology to characterize the objectives and the underlying axioms. We conduct a large scale evaluation of our objectives based on two data sets: a data set derived from the Wikipedia disambiguation pages and a product database.

  • This paper presents interface design recommendations for faceted navigation systems, based on 13 years of experience in experimenting with and evaluating such designs.

  • Designing a search system and interface may best be served (and executed) by scrutinizing usability studies.

  • Gross et al. (2015) have demonstrated that about a quarter of hits would typically be lost to keyword searchers if contemporary academic library catalogs dropped their controlled subject headings. This article re- ports on an investigation of the search value that subject descriptors and identifiers assigned by professional indexers add to a bibliographic database, namely the Australian Education Index (AEI). First, a similar methodology to that developed by Gross et al. (2015) was applied, with keyword searches representing a range of educational topics run on the AEI database with and without its subject indexing. The results indicated that AEI users would also lose, on average, about a quarter of hits per query. Second, an alternative research design was applied in which an experienced literature searcher was asked to find resources on a set of educational topics on an AEI database stripped of its subject indexing and then asked to search for additional resources on the same topics after the subject indexing had been reinserted. In this study, the proportion of additional resources that would have been lost had it not been for the subject indexing was again found to be about a quarter of the total resources found for each topic, on average.

Last update from database: 2022-08-17, 1:42 a.m. (EST)