Your search

Resource type

Results 31 resources

  • We live in an information age that requires us, more than ever, to represent, access, and use information. Over the last several decades, we have developed a modern science and technology for information retrieval, relentlessly pursuing the vision of a "memex" that Vannevar Bush proposed in his seminal article, "As We May Think." Faceted search plays a key role in this program. Faceted search addresses weaknesses of conventional search approaches and has emerged as a foundation for interactive information retrieval. User studies demonstrate that faceted search provides more effective information-seeking support to users than best-first search. Indeed, faceted search has become increasingly prevalent in online information access systems, particularly for e-commerce and site search. In this lecture, we explore the history, theory, and practice of faceted search. Although we cannot hope to be exhaustive, our aim is to provide sufficient depth and breadth to offer a useful resource to both researchers and practitioners. Because faceted search is an area of interest to computer scientists, information scientists, interface designers, and usability researchers, we do not assume that the reader is a specialist in any of these fields. Rather, we offer a self-contained treatment of the topic, with an extensive bibliography for those who would like to pursue particular aspects in more depth.

  • As information becomes more ubiquitous and the demands that searchers have on search systems grow, there is a need to support search behaviors beyond simple lookup. Information seeking is the process or activity of attempting to obtain information in both human and technological contexts. Exploratory search describes an information-seeking problem context that is open-ended, persistent, and multifaceted, and information-seeking processes that are opportunistic, iterative, and multitactical. Exploratory searchers aim to solve complex problems and develop enhanced mental capacities. Exploratory search systems support this through symbiotic human-machine relationships that provide guidance in exploring unfamiliar information landscapes. Exploratory search has gained prominence in recent years. There is an increased interest from the information retrieval, information science, and human-computer interaction communities in moving beyond the traditional turn-taking interaction model supported by major Web search engines, and toward support for human intelligence amplification and information use. In this lecture, we introduce exploratory search, relate it to relevant extant research, outline the features of exploratory search systems, discuss the evaluation of these systems, and suggest some future directions for supporting exploratory search. Exploratory search is a new frontier in the search domain and is becoming increasingly important in shaping our future world.

  • Of growing interest in the area of improving the search experience is the collection of implicit user behavior measures (implicit measures) as indications of user interest and user satisfaction. Rather than having to submit explicit user feedback, which can be costly in time and resources and alter the pattern of use within the search experience, some research has explored the collection of implicit measures as an efficient and useful alternative to collecting explicit measure of interest from users.This research article describes a recent study with two main objectives. The first was to test whether there is an association between explicit ratings of user satisfaction and implicit measures of user interest. The second was to understand what implicit measures were most strongly associated with user satisfaction. The domain of interest was Web search. We developed an instrumented browser to collect a variety of measures of user activity and also to ask for explicit judgments of the relevance of individual pages visited and entire search sessions. The data was collected in a workplace setting to improve the generalizability of the results.Results were analyzed using traditional methods (e.g., Bayesian modeling and decision trees) as well as a new usage behavior pattern analysis (“gene analysis”). We found that there was an association between implicit measures of user activity and the user's explicit satisfaction ratings. The best models for individual pages combined clickthrough, time spent on the search result page, and how a user exited a result or ended a search session (exit type/end action). Behavioral patterns (through the gene analysis) can also be used to predict user satisfaction for search sessions.

  • In this paper, we define and present a comprehensive classification of user intent for Web searching. The classification consists of three hierarchical levels of informational, navigational, and transactional intent. After deriving attributes of each, we then developed a software application that automatically classified queries using a Web search engine log of over a million and a half queries submitted by several hundred thousand users. Our findings show that more than 80% of Web queries are informational in nature, with about 10% each being navigational and transactional. In order to validate the accuracy of our algorithm, we manually coded 400 queries and compared the results from this manual classification to the results determined by the automated method. This comparison showed that the automatic classification has an accuracy of 74%. Of the remaining 25% of the queries, the user intent is vague or multi-faceted, pointing to the need for probabilistic classification. We discuss how search engines can use knowledge of user intent to provide more targeted and relevant results in Web searching.

  • Purpose – This paper aims to provide an overview of principles and procedures involved in creating a faceted classification scheme for use in resource discovery in an online environment. Design/methodology/approach – Facet analysis provides an established rigorous methodology for the conceptual organization of a subject field, and the structuring of an associated classification or controlled vocabulary. This paper explains how that methodology was applied to the humanities in the FATKS project, where the objective was to explore the potential of facet analytical theory for creating a controlled vocabulary for the humanities, and to establish the requirements of a faceted classification appropriate to an online environment. A detailed faceted vocabulary was developed for two areas of the humanities within a broader facet framework for the whole of knowledge. Research issues included how to create a data model which made the faceted structure explicit and machine-readable and provided for its further development and use. Findings – In order to support easy facet combination in indexing, and facet searching and browsing on the interface, faceted classification requires a formalized data structure and an appropriate tool for its management. The conceptual framework of a faceted system proper can be applied satisfactorily to humanities, and fully integrated within a vocabulary management system. Research limitations/implications – The procedures described in this paper are concerned only with the structuring of the classification, and do not extend to indexing, retrieval and application issues. Practical implications – Many stakeholders in the domain of resource discovery consider developing their own classification system and supporting tools. The methods described in this paper may clarify the process of building a faceted classification and may provide some useful ideas with respect to the vocabulary maintenance tool. Originality/value – As far as the authors are aware there is no comparable research in this area.

  • In this paper we present an analysis of an AltaVista Search Engine query log consisting of approximately 1 billion entries for search requests over a period of six weeks. This represents almost 285 million user sessions, each an attempt to fill a single information need. We present an analysis of individual queries, query duplication, and query sessions. We also present results of a correlation analysis of the log entries, studying the interaction of terms within queries. Our data supports the conjecture that web users differ significantly from the user assumed in the standard information retrieval literature. Specifically, we show that web users type in short queries, mostly look at the first 10 results only, and seldom modify the query. This suggests that traditional information retrieval techniques may not work well for answering web search requests. The correlation analysis showed that the most highly correlated items are constituents of phrases. This result indicates it may be useful for search engines to consider search terms as parts of phrases even if the user did not explicitly specify them as such.

  • The presented ontology-based model for indexing and retrieval combines the methods and experiences of traditional indexing languages with their cognitively interpreted entities and relationships with the strengths and possibilities of formal knowledge representation. The core component of the model uses inferences along the paths of typed relations between the entities of a knowledge representation for enabling the determination of result sets in the context of retrieval processes. A proposal for a general, but condensed, inventory of typed relations is given. The entities are arranged in aspect-oriented facets to ensure a consistent hierarchical structure. The possible consequences for indexing and retrieval are discussed.

  • In a document retrieval, or other pattern matching environment where stored entities (documents) are compared with each other or with incoming patterns (search requests), it appears that the best indexing (property) space is one where each entity lies as far away from the others as possible; in these circumstances the value of an indexing system may be expressible as a function of the density of the object space; in particular, retrieval performance may correlate inversely with space density. An approach based on space density computations is used to choose an optimum indexing vocabulary for a collection of documents. Typical evaluation results are shown, demonstating the usefulness of the model.

  • Classic IR (information retrieval) is inherently predicated on users searching for information, the so-called "information need". But the need behind a web search is often not informational -- it might be navigational (give me the url of the site I want to reach) or transactional (show me sites where I can perform a certain transaction, e.g. shop, download a file, or find a map). We explore this taxonomy of web searches and discuss how global search engines evolved to deal with web-specific needs.

  • With the increasing number and diversity of search tools available, interest in the evaluation of search systems, particularly from a user perspective, has grown among researchers. More researchers are designing and evaluating interactive information retrieval (IIR) systems and beginning to innovate in evaluation methods. Maturation of a research specialty relies on the ability to replicate research, provide standards for measurement and analysis, and understand past endeavors. This article presents a historical overview of 40 years of IIR evaluation studies using the method of systematic review. A total of 2,791 journal and conference units were manually examined and 127 articles were selected for analysis in this study, based on predefined inclusion and exclusion criteria. These articles were systematically coded using features such as author, publication date, sources and references, and properties of the research method used in the articles, such as number of subjects, tasks, corpora, and measures. Results include data describing the growth of IIR studies over time, the most frequently occurring and cited authors and sources, and the most common types of corpora and measures used. An additional product of this research is a bibliography of IIR evaluation research that can be used by students, teachers, and those new to the area. To the authors' knowledge, this is the first historical, systematic characterization of the IIR evaluation literature, including the documentation of methods and measures used by researchers in this specialty.

  • The objectives of the study were to conduct a series of observations and experiments under as real-life situation as possible related to: (1) user context of questions in information retrieval; (2) the structure and classification of questions; (3) cognitive traits and decision making of searchers; and (4) diferent searches of the same question. The study is presented in three parts: Part I presents the background of the study and describes the models, measures, methods, procedures and statistical analyses used. Part II is devoted to results related to users, questions and effectiveness measures, and Part III to results related to searchers, searches and overlap studies. A concluding summary of all results is presented in Part III. © 1988 John Wiley & Sons, Inc.

Last update from database: 5/9/24, 6:42 AM (UTC)