Your search
Results 4 resources
-
Classic IR (information retrieval) is inherently predicated on users searching for information, the so-called "information need". But the need behind a web search is often not informational -- it might be navigational (give me the url of the site I want to reach) or transactional (show me sites where I can perform a certain transaction, e.g. shop, download a file, or find a map). We explore this taxonomy of web searches and discuss how global search engines evolved to deal with web-specific needs.
-
Designing a search system and interface may best be served (and executed) by scrutinizing usability studies.
-
This paper presents an approach to automatically optimizing the retrieval quality of search engines using clickthrough data. Intuitively, a good information retrieval system should present relevant documents high in the ranking, with less relevant documents following below. While previous approaches to learning retrieval functions from examples exist, they typically require training data generated from relevance judgments by experts. This makes them difficult and expensive to apply. The goal of this paper is to develop a method that utilizes clickthrough data for training, namely the query-log of the search engine in connection with the log of links the users clicked on in the presented ranking. Such clickthrough data is available in abundance and can be recorded at very low cost. Taking a Support Vector Machine (SVM) approach, this paper presents a method for learning retrieval functions. From a theoretical perspective, this method is shown to be well-founded in a risk minimization framework. Furthermore, it is shown to be feasible even for large sets of queries and features. The theoretical results are verified in a controlled experiment. It shows that the method can effectively adapt the retrieval function of a meta-search engine to a particular group of users, outperforming Google in terms of retrieval quality after only a couple of hundred training examples.
-
One of the most pressing usability issues in the design of large web sites is that of the organization of search results. A previous study on a moderate-sized web site indicated that users understood and preferred dynamically organized faceted metadata over standard search. We are now examining how to scale this approach to very large collections, since it is difficult to present hierarchical faceted metadata in a manner appealing and understandable to general users. We have iteratively designed and tested interfaces that address these design challenges; the most recent version is receiving enthusiastic responses in ongoing usability studies.
Explore
Topic
Field of study
- Computer science (1)
- Information science (3)
Contribution
- Algorithm (1)
- Conceptual model (1)
- Empirical study (3)
Resource type
- Conference Paper (2)
- Journal Article (2)
Publication year
Resource language
- English (4)