Your search
Results 8 resources
-
We study the problem of answering ambiguous web queries in a setting where there exists a taxonomy of information, and that both queries and documents may belong to more than one category according to this taxonomy. We present a systematic approach to diversifying results that aims to minimize the risk of dissatisfaction of the average user. We propose an algorithm that well approximates this objective in general, and is provably optimal for a natural special case. Furthermore, we generalize several classical IR metrics, including NDCG, MRR, and MAP, to explicitly account for the value of diversification. We demonstrate empirically that our algorithm scores higher in these generalized metrics compared to results produced by commercial search engines.
-
Understanding user intent is key to designing an effective ranking system in a search engine. In the absence of any explicit knowledge of user intent, search engines want to diversify results to improve user satisfaction. In such a setting, the probability ranking principle-based approach of presenting the most relevant results on top can be sub-optimal, and hence the search engine would like to trade-off relevance for diversity in the results. In analogy to prior work on ranking and clustering systems, we use the axiomatic approach to characterize and design diversification systems. We develop a set of natural axioms that a diversification system is expected to satisfy, and show that no diversification function can satisfy all the axioms simultaneously. We illustrate the use of the axiomatic framework by providing three example diversification objectives that satisfy different subsets of the axioms. We also uncover a rich link to the facility dispersion problem that results in algorithms for a number of diversification objectives. Finally, we propose an evaluation methodology to characterize the objectives and the underlying axioms. We conduct a large scale evaluation of our objectives based on two data sets: a data set derived from the Wikipedia disambiguation pages and a product database.
-
This study examined how searchers interacted with a web-based, faceted library catalog when conducting exploratory searches. It applied eye tracking, stimulated recall interviews, and direct observation to investigate important aspects of gaze behavior in a faceted search interface: what components of the interface searchers looked at, for how long, and in what order. It yielded empirical data that will be useful for both practitioners (e.g., for improving search interface designs), and researchers (e.g., to inform models of search behavior). Results of the study show that participants spent about 50 seconds per task looking at (fixating on) the results, about 25 seconds looking at the facets, and only about 6 seconds looking at the query itself. These findings suggest that facets played an important role in the exploratory search process.
-
We show that incorporating user behavior data can significantly improve ordering of top results in real web search setting. We examine alternatives for incorporating feedback into the ranking process and explore the contributions of user feedback compared to other common web search features. We report results of a large scale evaluation over 3,000 queries and 12 million user interactions with a popular web search engine. We show that incorporating implicit feedback can augment other features, improving the accuracy of a competitive web search ranking algorithms by as much as 31% relative to the original performance.
-
This paper examines the reliability of implicit feedback generated from clickthrough data in WWW search. Analyzing the users' decision process using eyetracking and comparing implicit feedback against manual relevance judgments, we conclude that clicks are informative but biased. While this makes the interpretation of clicks as absolute relevance judgments difficult, we show that relative preferences derived from clicks are reasonably accurate on average.
-
There are currently two dominant interface types for searching and browsing large image collections: keyword-based search, and searching by overall similarity to sample images. We present an alternative based on enabling users to navigate along conceptual dimensions that describe the images. The interface makes use of hierarchical faceted metadata and dynamically generated query previews. A usability study, in which 32 art history students explored a collection of 35,000 fine arts images, compares this approach to a standard image search interface. Despite the unfamiliarity and power of the interface (attributes that often lead to rejection of new search interfaces), the study results show that 90% of the participants preferred the metadata approach overall, 97% said that it helped them learn more about the collection, 75% found it more flexible, and 72% found it easier to use than a standard baseline system. These results indicate that a category-based approach is a successful way to provide access to image collections.
-
This paper presents an approach to automatically optimizing the retrieval quality of search engines using clickthrough data. Intuitively, a good information retrieval system should present relevant documents high in the ranking, with less relevant documents following below. While previous approaches to learning retrieval functions from examples exist, they typically require training data generated from relevance judgments by experts. This makes them difficult and expensive to apply. The goal of this paper is to develop a method that utilizes clickthrough data for training, namely the query-log of the search engine in connection with the log of links the users clicked on in the presented ranking. Such clickthrough data is available in abundance and can be recorded at very low cost. Taking a Support Vector Machine (SVM) approach, this paper presents a method for learning retrieval functions. From a theoretical perspective, this method is shown to be well-founded in a risk minimization framework. Furthermore, it is shown to be feasible even for large sets of queries and features. The theoretical results are verified in a controlled experiment. It shows that the method can effectively adapt the retrieval function of a meta-search engine to a particular group of users, outperforming Google in terms of retrieval quality after only a couple of hundred training examples.
-
One of the most pressing usability issues in the design of large web sites is that of the organization of search results. A previous study on a moderate-sized web site indicated that users understood and preferred dynamically organized faceted metadata over standard search. We are now examining how to scale this approach to very large collections, since it is difficult to present hierarchical faceted metadata in a manner appealing and understandable to general users. We have iteratively designed and tested interfaces that address these design challenges; the most recent version is receiving enthusiastic responses in ongoing usability studies.
Explore
Topic
- Information behavior (3)
-
Information retrieval
(8)
- Faceted search (3)
- Implicit feedback (2)
-
Ranking
(3)
- Diversity (2)
- Relevance (2)
Field of study
- Computer science (6)
- Information science (2)
Contribution
- Empirical study
- Algorithm (2)
- Conceptual model (1)
- Evaluation model (1)
Resource type
Publication year
Resource language
- English (8)